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Abstract

 Cyanobacterial blooms are a cause of concern because of their potential impacts on the marine environment. In Sentosa 
Cove, Singapore, Lyngbya majuscula blooms appeared regularly in the highly enclosed boat canals traversing the seafront 
residential development. This study investigated whether sediments resuspended by physical disturbance liberated nutrients 
that contribute to the blooms. Sediment resuspension events were mimicked in containers of sediment collected from the 
canals. Lyngbya majuscula that were incubated in containers with resuspended sediment attained greater biomass than those 
in filtered seawater only. Levels of iron, phosphates and nitrites in seawater with resuspended sediments were significantly 
higher than in those without. The results indicate that recurrent L. majuscula blooms in Sentosa Cove could be attributed 
to nutrient loading from sediment resuspension. 
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1. Introduction

 Marine cyanobacteria are a rich source of natural 
products, with secondary metabolites from members of 
the genus Lyngbya, especially, having generated novel 
pharmaceuticals that are useful in furthering marine 
biotechnology and biomedical research (Tan and Goh, 
2009; Tan, 2010; Tan et al., 2010). The presence of 
Lyngbya blooms can, however, have wide-ranging 
effects on the marine environment, public health, 
as well as the economy. The blue-green filamentous 
marine cyanobacterium Lyngbya majuscula has been 
shown to cause tumours in turtles that ingest it (Arthur 
et al., 2006), reduce recruitment and survivorship of 
scleractinian corals and gorgonians (Kuffner and Paul, 
2004; Kuffner et al., 2006), as well as overgrow and 
smother seagrass beds (Watkinson et al., 2005). Similar 
to the effects of macroalgae flourishing in shallow soft 
bottom habitats, L. majuscula blooms can lower the 
nursery capacity of the habitat and affect the feeding 
behaviour of various fish species (Wennhage and Pihl, 
2007; Gilby et al., 2011). For humans, direct contact 
with toxin-producing strains of L. majuscula can trigger  
ailments such as dermatitis, eye irritations and 
respiratory problems, while accidental oral ingestion 
of the cyanobacterium or consumption of marine 
organisms such as fish or turtles which have eaten it 
can cause hallucinations, vomiting, diarrhoea and even 
death (Osborne et al., 2001). 

 In recent years, incidences of Lyngbya spp. blooms 
have increased throughout the world, occurring on 
reefs in Florida, reef flats in Guam, and coastal bays in 
Australia (Thacker and Paul, 2001; Albert et al., 2005; 
Paul et al., 2005). The frequency of blooms and the 
severity of these impacts are causes for concern as cy-
anobacteria are predicted to thrive with global warming 
(Paul, 2008; Paerl and Paul, 2012). 
 Here, we report recurrent cyanobacterial blooms 
in a highly modified coastal environment in Singapore. 
Sentosa Cove, located on Sentosa Island, is a seafront 
residential development comprising a marina (ONEo15 
Marina) nestled between two residential zones known 
as the Northern and Southern precincts. Construction 
of the Cove included the creation of a canal waterway 
that runs through each of the Northern and Southern 
precincts. The waterway is concrete with vertical brick 
wall sides and the bottom is lined with impermeable 
geotextile sheets. Water levels are maintained at a 
depth of 2.5 m by the use of sluice gates connected to 
the sea, resulting in reduced tidal influence, flow and 
water exchange, and accumulation of a sediment layer  
at the bottom. Residential bungalows with gently 
sloping manicured lawns lie on both sides of the 
waterway, each with a floating pontoon for the 
berthing of yachts. The development essentially created 
an enclosed marine system. 
 Thick floating mats of L. majuscula were initially 
observed in the Sentosa Cove waterway when the 
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1. Introduction

In India, about 200 tons of mercury and its
compounds are introduced into the environment
annually as effluents from industries (Saffi, 1981).
Mercuric chloride has been used in agriculture as a
fungicide, in medicine as a topical antiseptic and
disinfectant, and in chemistry as an intermediate in
the production of other mercury compounds. The
contamination of aquatic ecosystems by heavy
metals and pesticides has gained increasing attention
in recent decades. Chronic exposure to and
accumulation of these chemicals in aquatic biota
can result in tissue burdens that produce adverse
effects not only in the directly exposed organisms,
but also in human beings.

Fish provides a suitable model for monitoring
aquatic genotoxicity and wastewater quality
because of its ability to metabolize xenobiotics and
accumulated pollutants. A micronucleus assay has
been used successfully in several species (De Flora,
et al., 1993, Al-Sabti and Metcalfe, 1995). The
micronucleus (MN) test has been developed
together with DNA-unwinding assays as
perspective methods for mass monitoring of
clastogenicity and genotoxicity in fish and mussels
(Dailianis et al., 2003).

The MN tests have been successfully used as
a measure of genotoxic stress in fish, under both

laboratory and field conditions. In 2006 Soumendra
et al., made an attempt to detect genetic biomarkers
in two fish species, Labeo bata and Oreochromis
mossambica, by MN and binucleate (BN)
erythrocytes in the gill and kidney erythrocytes
exposed to thermal power plant discharge at
Titagarh Thermal Power Plant, Kolkata, India.

The present study was conducted to determine
the acute genotoxicity of the heavy metal compound
HgCl2 in static systems. Mercuric chloride is toxic,
solvable in water hence it can penetrate the aquatic
animals. Mutagenic studies with native fish species
represent an important effort in determining the
potential effects of toxic agents. This study was
carried out to evaluate the use of the micronucleus
test (MN) for the estimation of aquatic pollution
using marine edible fish under lab conditions.

2. Materials and methods

2.1. Sample Collection

The fish species selected for the present study
was collected from Pudhumadam coast of Gulf of
Mannar, Southeast Coast of India. Therapon
jarbua belongs to the order Perciformes of the
family Theraponidae. The fish species, Therapon
jarbua (6-6.3 cm in length and 4-4.25 g in weight)
was selected for the detection of genotoxic effect
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construction of the first residential units commenced in 
2004. Similar to that reported by Albert et al. (2005), 
bubbles trapped within the benthic L. majuscula 
matrix on hot sunny days enabled these clumps to float 
and aggregate at the water surface, possibly aiding 
in their dispersal. These blooms have occurred ever 
since with increasing frequency and become odorous, 
unsightly floating mats. Attempts by the management 
at amelioration have included regular removal of the 
mats. However, the impacts of persistent blooms are 
likely to be exacerbated in a highly enclosed marine 
environment. 
 That Lyngbya majuscula are dependent on 
phosphorus, nitrogen and iron for their primary mode 
of growth, and proliferate upon the introduction of 
these nutrients to in situ or ex situ systems (Elmetri  
and Bell, 2004; Ahern et al., 2006a; Ahern et al., 2008), 
suggested that nutrient loading was a principal cause 
of frequent L. majuscula blooms in this highly enclosed 
system. While nutrient influx from terrestrial sources 
was likely to occur due to the proximity of gardens 
and construction sites to the waterway, the possibility 
also existed for sediment resuspension – a ubiquitous 
process in aquatic environments that liberates nutrients 
– to influence cyanobacterial bloom development. The 
objective of this study was thus to establish the influence 
of sediment resuspension as a driver of the formation  
of L. majuscula blooms. We hypothesised that 
sediment resuspension events caused by the agitation 

of the benthic sediment layer (e.g., via boat traffic 
or physical removal of the L. majuscula mats) in the 
waterway released nutrients into the water column and 
contributed to the frequent cyanobacterial blooms.

2. Materials and Methods

2.1. Study site

 The study was conducted at the Northern 
Residential Precinct of the Sentosa Cove waterway 
(1o14’55”N, 103o50’40”E) (Fig. 1) from July to 
December 2008. Light penetration was measured with 
a LI-193 Spherical Quantum Sensor, while temperature 
and salinity were measured using a YSI 85 multi-probe 
throughout the water column.

2.2. Effect of sediment resuspension on Lyngbya 
majuscula growth

 Samples of bottom sediment, seawater and 
floating mats of L. majuscula from the study site were 
collected. All sediment, fauna and macroalgae that 
were trapped inside the cyanobacterial matrix were 
removed. An enclosed area illuminated by six 18W 
600 mm full-spectrum fluorescent lamps (Arcadia, 
England) was constructed in the laboratory. Forty 
700 ml glass containers, each covered with black duct 
tape such that light from the lamps only entered 

Figure 1. (a) Map of study site, (b) residences in the Northern Precinct, (c) site undergoing construction in 2008, (d) Lyngbya 
majuscula mats on the water surface

Thick floating mats of L. majuscula were initially observed in the Sentosa Cove waterway 
when the construction of the first residential units commenced in 2004. Similar to that reported by 
Albert et al. (2005), bubbles trapped within the benthic L. majuscula matrix on hot sunny days 
enabled these clumps to float and aggregate at the water surface, possibly aiding in their dispersal. 
These blooms have occurred ever since with increasing frequency and become odorous, unsightly 
floating mats. Attempts by the management at amelioration have included regular removal of the 
mats. However, the impacts of persistent blooms are likely to be exacerbated in a highly enclosed 
marine environment.  

That Lyngbya majuscula are dependent on phosphorus, nitrogen and iron for their primary 
mode of growth, and proliferate upon the introduction of these nutrients to in situ or ex situ systems 
(Elmetri and Bell, 2004; Ahern et al., 2006a; Ahern et al., 2008), suggesting that nutrient loading was 
a principal cause of frequent L. majuscula blooms in this highly enclosed system. While nutrient 
influx from terrestrial sources was likely to occur due to the proximity of gardens and construction 
sites to the waterway, the possibility also existed for sediment resuspension – a ubiquitous process in 
aquatic environments that liberates nutrients – to influence cyanobacterial bloom development. The 
objective of this study was thus to establish the influence of sediment resuspension as a driver of the 
formation of L. majuscula blooms. We hypothesised that sediment resuspension events caused by the 
agitation of the benthic sediment layer (e.g., via boat traffic or physical removal of the L. majuscula 
mats) in the waterway released nutrients into the water column and contributed to the frequent 
cyanobacterial blooms. 
 
2. Materials and Methods 
 
2.1. Study site 
 

The study was conducted at the Northern Residential Precinct of the Sentosa Cove waterway 
(1o14’55”N, 103o50’40”E) (Fig. 1) from July to December 2008. Light penetration was measured with 
a LI-193 Spherical Quantum Sensor, while temperature and salinity were measured using a YSI 85 
multi-probe throughout the water column. 

 

 
 
Figure 1. (a) Map of study site, (b) residences in the Northern Precinct, (c) site undergoing construction in 2008, 
(d) Lyngbya majuscula mats on the water surface 
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via the container mouths were placed in the area. 
Sixty-five grams of sediment were introduced to each 
of 20 containers (‘treatments’) and these were arranged 
alternately with 20 other containers without sediment 
(‘controls’). Seawater from the study site was filtered 
with a 2 μm phytoplankton net and 500 ml was poured 
into each container. This served to agitate the sediment  
in the treatment containers to mimic sediment 
resuspension events. The containers were left to stand 
for one hour to allow the sediment to settle. A perforated 
plastic disc was then positioned horizontally across 
the middle of each container and 0.05 g (= 0.011 g dry 
weight) of cleaned L. majuscula was placed on it. The 
disc prevented direct contact between the cyanobacteria 
and the sediment at the bottom of the container. The 
experimental setup ran for 15 days and distilled water 
was added to top up the volume in the containers when 
necessary. Finally, the L. majuscula samples from each 
container were washed with filtered seawater, dried in 
an oven at 65°C for 48 hrs, and weighed. 

2.3. Effect of sediment resuspension on nutrient levels 

 Seawater samples from the treatment and control 
containers were filtered again with a phytoplankton 
net and their nutrient content was analysed with Od-
yssey Hach powder pillows and an Odyssey DR/2500 
Spectrophotometer. Nitrates were measured using the 
Cadmium reduction method with NitraVer® Nitrate 

Reagent; nitrites using the Diazotization method with 
NitriVer®3 Nitrite Reagent; phosphates using the 
PhosVer 3 Absorbic acid method with PhosVer; and 
iron with the TPTZ method. 
 Using SPSS v17, the data were transformed where 
necessary, to satisfy the assumptions of normality and 
homogeneity of variances. They were then analysed 
using independent samples t-test. 

3. Results

3.1. Environmental parameters at study site

 The daytime temperature at the study site ranged 
from 27.9°C at the deepest part of the waterway to 
31.5°C on the water surface. There was less temperature 
variation at night – from 31.1°C at the surface to 31.3°C 
at the bottom. Salinity of the water column increased 
with depth (29.4 ppt at the surface to 30.0 ppt at the  
bottom). Daytime light intensity in the waterway 
decreased with depth, dropping from 1023.00 μmol/sm² 
at the surface to 75.70 μmol/sm² at the bottom.

3.2. Effect of sediment resuspension on Lyngbya 
majuscula growth

 Lyngbya majuscula samples incubated in 
the treatment containers had significantly greater 
biomass than those in the controls (0.0388±0.0043 g 

Figure 2. Nutrient content in control (filtered seawater only from the Sentosa Cove waterway) and treatment (filtered seawater 
with resuspended sediment) containers (* represents p<0.05; ** represents p<0.005; *** represents p<0.001).

 
 
Figure 2. Nutrient content in control (filtered seawater only from the Sentosa Cove waterway) and treatment 
(filtered seawater with resuspended sediment) containers (* represents p<0.05; ** represents p<0.005; *** 
represents p<0.001). 
 
4. Discussion 
 

In Singapore, Lyngbya spp. can be found in intertidal areas and lagoons, and are typically 
observed to develop into large benthic mats during the warmer season (Tan, 2011). Except for salinity 
readings which were comparable to those described from earlier studies conducted in the Singapore 
Straits (e.g., Chou and Hsu, 1987; Gin et al., 2000; Chou et al., 2004; Loh et al., 2006), the average 
light intensity, temperature, and levels of nitrites, nitrates and phosphates within the waterway of the 
Northern Residential Precinct of Sentosa Cove were all higher. As Lyngbya majuscula flourishes in 
shallow water bodies, under high light, high temperature, and in the presence of bioavailable nutrients 
(Albert et al., 2005; Watkinson et al., 2005), the ambient conditions in the Sentosa Cove waterway 
appeared especially conducive to the growth of L. majuscula.  

The agitation of the sediments via the introduction of water into the glass containers 
mimicked the disturbance of the bottom of the waterway by activities such as the physical removal of 
Lyngbya mats, the passage of yachts and jet skis across the waterway, and the occasional opening of 
sluice gates. Nutrient levels, especially those of phosphates and iron spiked after the sediments were 
resuspended in the treatment containers, showing that the accumulated sediment layer in the waterway 
was a major source of dissolved nutrients which could be liberated in significant amounts if disturbed 
(Kalnejais et al., 2010). Lyngbya majuscula is able to fix nitrogen (Lundgren et al., 2003), so its 
growth is not limited in a low-nitrogen environment. Therefore, while nitrates and nitrites present in 
the Sentosa Cove waterway can encourage L. majuscula filament growth, they probably did not 
influence L. majuscula development to the extent as that of phosphates and iron, which promote 
nitrogen fixation, photosynthesis and ultimately growth in L. majuscula (Elmetri and Bell, 2004; 
Ahern et al., 2006b; Ahern et al., 2007). The positive influence that resuspended sediment had on the 
growth of the cyanobacteria in Sentosa Cove was further corroborated by the significantly greater 
biomass of L. majuscula incubated in containers with sediment.  

Additionally, the site experienced bouts of torrential rain over the course of the study. Surface 
water samples collected across the waterway after an episode of heavy rain revealed nutrient content 
much higher than those in the control containers. This was especially so for phosphates and nitrites, 
which were respectively 13 and 12 times more. Although this measurement was a one-off event, it 
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and 0.0210±0.0032 g respectively) (log-transformed, 
t = 3.844, df = 38, p<0.001). 

3.3. Effect of sediment resuspension on nutrient levels

 There were no significant differences in nitrate 
concentrations between the controls and treatments 
(log-transformed, t = -1.868, df = 10, p = 0.182). 
However, concentrations of the other three nutrients 
were significantly different (Fig. 2). Iron (fourth 
root-transformed, t = -4.814, df = 10, p = 0.002), 
phosphates (log-transformed, t = -10.359, df = 10, 
p<0.001), and nitrites (square root-transformed, t = 
-3.041, df = 10, p = 0.024) were significantly higher 
in treatment containers than in the controls. 

4. Discussion

 In Singapore, Lyngbya spp. can be found in 
intertidal areas and lagoons, and are typically observed 
to develop into large benthic mats during the warmer 
season (Tan, 2011). Except for salinity readings which 
were comparable to those described from earlier 
studies conducted in the Singapore Straits (e.g., Chou 
and Hsu, 1987; Gin et al., 2000; Chou et al., 2004; Loh 
et al., 2006), the average light intensity, temperature, 
and levels of nitrites, nitrates and phosphates within 
the waterway of the Northern Residential Precinct of 
Sentosa Cove were all higher. As Lyngbya majuscula 
flourishes in shallow water bodies, under high light, 
high temperature, and in the presence of bioavailable 
nutrients (Albert et al., 2005; Watkinson et al., 2005), 
the ambient conditions in the Sentosa Cove waterway 
appeared especially conducive to the growth of L. 
majuscula. 
 The agitation of the sediments via the introduction 
of water into the glass containers mimicked the 
disturbance of the bottom of the waterway by activities 
such as the physical removal of Lyngbya mats, the 
passage of yachts and jet skis across the waterway, and 
the occasional opening of sluice gates. Nutrient levels, 
especially those of phosphates and iron spiked after the 
sediments were resuspended in the treatment containers,  
showing that the accumulated sediment layer in the 
waterway was a major source of dissolved nutrients 
which could be liberated in significant amounts if 
disturbed (Kalnejais et al., 2010). Lyngbya majuscula is 
able to fix nitrogen (Lundgren et al., 2003), so its growth 
is not limited in a low-nitrogen environment. Therefore, 
while nitrates and nitrites present in the Sentosa 
Cove waterway can encourage L. majuscula filament 
growth, they probably did not influence L. majuscula 
development to the extent as that of phosphates and 
iron, which promote nitrogen fixation, photosynthesis 

and ultimately growth in L. majuscula (Elmetri and 
Bell, 2004; Ahern et al., 2006b; Ahern et al., 2007). 
The positive influence that resuspended sediment had 
on the growth of the cyanobacteria in Sentosa Cove 
was further corroborated by the significantly greater 
biomass of L. majuscula incubated in containers with 
sediment. 
 Additionally, the site experienced bouts of 
torrential rain over the course of the study. Surface water 
samples collected across the waterway after an episode 
of heavy rain revealed nutrient content much higher than 
those in the control containers. This was especially so 
for phosphates and nitrites, which were respectively 13 
and 12 times more. Although this measurement was a 
one-off event, it suggested that rainfall events at Sentosa 
Cove can introduce substantial amounts of phosphates 
and iron into the waterway via terrestrial runoff and 
represent another source of stimuli for cyanobacterial 
growth. Our findings therefore indicate that the 
trajectory of L. majuscula bloom development in the 
Sentosa Cove waterway is spurred on by the influx 
of nutrients through channels such as sediment 
resuspension, and hint at the role of terrestrial runoff 
as a contributor as well. The effects of nutrient loading 
were also likely intensified by restricted flushing of 
the waterway.
 The popularity of built up marine environments 
such as marinas, and increasingly, highly sheltered 
systems such as that in Sentosa Cove, point to the need 
for increased management of these artificial marine 
environments. It is thus imperative that anthropogenic 
disturbances (such as those in this study) be limited  
wherever possible. For example, runoff from the 
residents’ gardens may be reduced by installing drainage 
systems to direct fertiliser-laden water away from 
the waterway. Increasing the water current within the 
waterway can enhance the dissipation of point sources 
of eutrophication and facilitate exchange – this may 
be achieved by installing pumps or making the influx 
and efflux of seawater more frequent. Frequent 
disturbance of the bottom sediment layer (and the 
associated triggering of downstream geo-chemical-
physical effects) has even been suggested as a possible 
management solution by favouring the selection of 
new fauna unlike those selected for in eutrophic 
environments (Lenzi, 2010). The use of biological 
controls (e.g., seahares) may also be considered to 
reduce the intensity of Lyngbya blooms (Geange and 
Stier, 2010). 
 The environmental conditions in the waterway are 
by no means natural and are not entirely favourable 
to many marine species, but over time may have the 
potential to harbour certain lagoonal assemblages or 
even serve as nursery grounds for others. As with some  
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natural semi-enclosed marine systems (e.g., landlocked 
seas), a conceptual framework and an integrated 
approach may be necessary to ensure proper 
management of enclosed man-made marine ones 
(e.g., Kroeze et al., 2008), or annual maintenance 
costs, such as those for Sentosa Cove (Tay, 2011), can 
be unnecessarily exorbitant. 
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